πDay 10. Kadane's Algorithm π§
The problem can be found at the following link: Problem Link
π‘ Problem Description:
Given an integer array arr[]
, you need to find and return the maximum sum possible from all the subarrays.
π Example Walkthrough:
Input:
arr[] = [2, 3, -8, 7, -1, 2, 3]
Output:
11
Explanation:
The subarray {7, -1, 2, 3}
has the largest sum, which is 11
.
Input:
arr[] = [-2, -4]
Output:
-2
Explanation:
The subarray {-2}
has the largest sum -2
.
Constraints:
$
1 β€ arr.size() β€ 10^5
$$
-10^9 β€ arr[i] β€ 10^4
$
π― My Approach:
Kadane's Algorithm:
The core idea is to iterate through the array and maintain two variables:
maxh
: the maximum sum of the subarray that ends at the current index.maxf
: the global maximum sum encountered so far.
For each element:
Update
maxh
to be either the current element alone (starting a new subarray) or the current element added to the sum of the previous subarray.Update
maxf
to store the larger value between the currentmaxf
andmaxh
.
The result is the global maximum sum of a subarray in the array.
Steps:
Initialize
maxh
to 0 andmaxf
to a very small value.Traverse the array to calculate the maximum sum of the subarrays.
Return
maxf
as the result, which will hold the largest sum of any subarray.
π Time and Auxiliary Space Complexity π
Expected Time Complexity: O(n), where
n
is the size of the array. The algorithm performs a single linear scan of the array.Expected Auxiliary Space Complexity: O(1), as we only use a constant amount of additional space.
π Solution Code
Code (C)
#include <limits.h>
long long maxSubarraySum(int arr[], int n) {
long long maxh = 0, maxf = LLONG_MIN;
for (int i = 0; i < n; i++) {
maxh = (maxh + arr[i] > arr[i]) ? maxh + arr[i] : arr[i];
maxf = (maxf > maxh) ? maxf : maxh;
}
return maxf;
}
Code (Cpp)
class Solution {
public:
long long maxSubarraySum(vector<int>& arr) {
long long maxh = 0, maxf = LLONG_MIN;
for (auto num : arr) {
maxh = std::max(num + maxh, (long long)num);
maxf = std::max(maxf, maxh);
}
return maxf;
}
};
Code (Java)
class Solution {
public long maxSubarraySum(int[] arr) {
long maxh = 0, maxf = Long.MIN_VALUE;
for (int num : arr) {
maxh = Math.max(num, maxh + num);
maxf = Math.max(maxf, maxh);
}
return maxf;
}
}
Code (Python)
class Solution:
def maxSubArraySum(self, arr):
maxh = 0
maxf = float('-inf')
for num in arr:
maxh = max(num, maxh + num)
maxf = max(maxf, maxh)
return maxf
π― Contribution and Support:
For discussions, questions, or doubts related to this solution, feel free to connect on LinkedIn: Any Questions. Letβs make this learning journey more collaborative!
β If you find this helpful, please give this repository a star! β
πVisitor Count
Last updated